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SUPERSONIC FLOW OF A GAS SUSPENSION NEAR A WEDGE IN THE PRESENCE 

OF REFLECTED PARTICLES 

V. D. Sarychev, A. P. Trunev, 
and V. M. Fomin 

UDC 532.529.5 

Supersonic flow, perturbed by the interaction of the gas with a cloud of monodispersed 
particles, near a wedge is studied. The exact solution of the problem of the motion of par- 
ticles behind an oblique shock and particles specularly reflected from the surface of the 
wedge is given. These results are used to determine the perturbations of the gasdynamic para- 
meters and forces acting on the wedge in a two-phase flow. The effects of the particles on 
the flow in two different situations are compared: In one situation the particles stick to the 
surface of the wedge; in the other situations they reflect elastically, and form a layer of 
dust with a sharp contact boundary. 

The problem of the perturbed gas flow behind an oblique shock was previously studied in 
gasdynamics [I] and in the dynamics of a radiating gas [2]. The problem of supersonic two- 
phase flow near a wedge was studied on the basis of the linear theory in [3] and by numerical 
methods in [4]. The solution of the problem of the motion of a particle behind an oblique 
shock [5] and of a reflected particle [6] are known. The exact solution of the problem of 
the motion of a cloud of particles behind an oblique shock was found in [7]. 
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Fig. I 

I. Motion of a Dust Cloud in the Presence of Supersonic Flow near a Wedge. We shall 
study the aerodynamic situation arising when a supersonic flow of a gas suspension impinges 
against a wedge whose half-angle is equal to ~; the flow can impinge against a flat plate, 
in which case ~ is the angle of attack. The general pattern of the flow in the case of a 
small admixture of monodispersed particles is shown in Fig. I, where I is the position of the 
oblique (unperturbed) shock, 2 is the streamline of the gas in the main flow, 3 is the tra- 
jectory of the particle which does not reach the surface of the wedge, 4 is the limiting 
trajectory below which the cloud of reflected particles moves, 5 is the trajectory of a par- 
ticle undergoing a collision with the wedge, and x, y are the axes of a Cartesian coordinate 
system; the broken line shows the position of the perturbed shock. 

Under the assumption that the relative flow rate of the condensed phase in the incident 
flow is small (pp~Up~/p~u~ ~ I), we shall study the problem of finding the parameters of the 
supersonic flow of the gas mixture in the entire flow region. We shall solve this problem 
by iterations, similar to the trajectory method for calculating two-phase flows [8]. At the 
first step we assume that the gas flow is free of particles, when the solution of the gas- 
dynamic equations reduces to conditions on the oblique shock. The motion of the particles 
in this approximation occurs against the background of the constant flow of gas and reduces 
to relaxation from one equilibrium state to another. At the next step the interaction of the 
gas with the particles is "switched on," and the intensity of the interaction is determined 
from the conservation laws for mass, momentum, and energy for the mixture as a whole. At the 
second step the motion of the particles is assumed to be known from the solution obtained at 
the first step. Because 6o ~ I, the solution of the gasdynamic equations can be reduced to 
finding the acoustic perturbations caused by the volume sources. By means of the above-de- 
scribed procedure the gasdynamic parameters and the particle flux density are determined to 
within ~5~, and the temperature and velocity of the condensed phase are determined to within 
~60. It is, however, important that the forces acting on the wedge in the flow of the gas 
suspension be determined to within ~6~, since the flow rate of the discrete phase is of the 
order of ~60. In this model it is necessary to take into account the effect of the reflected 
particles on the state of the gas flow, but the collision of the incident and reflected par- 
ticles may be neglected, because the intensity of their interaction is of the order of ~5~. 

Thus according to the foregoing plan we shall study the motion of a cloud of particles 
behind an oblique shock. To describe the motion of a large number of particles we shall use 
the continuum representations. The corresponding equations have the form [9] 

OlOx(ppup) + OlOy(ppvp) = O, 
(UpO/Ox + VpO/Oy)u v = (3poCD/4OJp)W(~ - -  up), (1 .  1) 

(UpO/OX + VpO/Oy)vp : --(39oCD/49~dp)Wvp, 

(u~a/ax + v~a/ay) Tp =. (6c~o  Nu/c~p~d~ Pr) (To - -  r~), 

2 2 where W = /(u0 -- Up) + Vp; P0, u0, To, ~0 are the density, velocity, temperature, and vis- 
cosity of the gas behind the oblique shock; Cp is the specific heat capacity of the gas; Ps, 
c s are the density and specific heat capacity of the particle material; dp is the diameter 
of the particle; Nu is the Nusselt number; and Pr is the Prandtl number. 

We shall further assume that the drag CDdepends only on the Mach and Reynolds numbers 
of the relative motion C D = CD(M, Re), where M = W/(yRT0) and Re = WdpP0/~0, while the heat- 
transfer law has the form Nu = Nu(M, Re, Pr). 
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We shall give the boundary conditions for the system (1.1) on the line of the shock, 
assuming that the velocity and temperature of the dust particles are the same as that of the 
gas in the incident flow, i.e., we are talking about the motion of some body through a cloud 
of dust in the atmosphere. Thus along the line y I= xtan 6 the following conditions hold: 

pp = p p ~ ,  up = q~ cos a ,  Vp = - - q ~  sina, T v ~ T ~ ,  (1 .2)  

where 0 is the angle of inclination of the shock wave relative to the surface of the wedge; 
q~, T~ are the modulus of the velocity and temperature of the gas in the incident flow. 

We note that the first and fourth equations of the system (1.1) are linear in Ip and Tp, 
respectively. It is therefore necessary to solve the nonlinear system of the two remaining 
equations; this was done in [7]. We recall the Basic idea of the solution of the problem. 
The system under study and the corresponding boundary conditions do not contain arbitrary 
functions and contain one parameter with the dimensions of length ~p. Since the coordinates 
x and y are equivalent in this problem, the solution cannot depend on x and y separately; it 
depends only on some linear combination of these variables. The variable ~ = xtan 0 -- y is 
such a combination. It follows from a dimensional analysis that the solution of the problem 
depends on the dimensionless ratio ~/Ip. This holdsZin reality, but only in integral form. 
The solution of the problem (1.1) and (1.2) can be represented in the form (cf. [7]) 

~p = p ~ / { ~  § ( l  - -  ~)~], up = uo § (q~ cos  ~ - -  Uo)n, ( 1 . 3 )  

vp = - - ( q ~  s in a )~ ,  Tp = T o -  (To - -  T ~ ) ~ J ( ~ ) ,  

where ~ = P~/P0 is the ratio of the gas densities before and after the shock. The functions 
~(~) and J(n) satisfy the equations 

I 

~ sin a/sin (0 + a) = j',[e + (1 --  e) s]/p(s) ds/s 2, 

1 

J(~) = (8cp/c~ Be o Pr) .f Nu (s Beo, sMo, Pr) C~ 1 (s Reo, s Mo) ds/s ~, ( 1 . 4) 

Beo = q~dppjsin a/(~o cos 0), Mo = M ~ T ~  sin a/(To cos 0), 

Ip(s) = 4p~dy(3poC~(S Reo, sMo)). 

We shall clarify the origin of the complicated arguments in the integrands in (1.4). Accord- 
ing to (1.3), the modulus of the velocity is given by W = ((Up -- u0) 2 + v~) I/2 = ~q~ sin~/ 
cos e. Therefore M = ~M0, Re = ~Re0 and correspondingly 

CD = C~(~ Reo, qMo), N n  = NU(~ Reo, ~Mo, Pr).  

On the surface of the wedge the particles have a velocity component normal to the sur- 
face Vp = --(q~ sin~)~(xtan 0). These particles collide with the surface and either stick to 
it, for example, if they are drops of liquid, or are reflected from it and continue their 
motion, if they are solid particles. Let us study the problem of the motion of a cloud of 
particles reflected specularly from the surface. We shall distinguish the parameters of the 
flow of reflected particles by a prime; then the boundary conditions on the surface of the 
wedge for them have the form (condition of specular reflection) 

t t ! I 

p p = p p ,  u ~ = u p ,  v p = - - v ~ ,  T p = T p .  ( 1 . 5 )  

Let us assume that the motion of reflected particles is described by the system of equations 
(1.1), in which all parameters are primed, after which we denote the system by (1.1'). We 
note that the system of equations (I.I) is invariant relative to the simultaneous substitu- 
tion y § --y, Vp § --Vp. From here and from the boundary conditions (1.5) it follows that the 
solution of the problem (1.1) and (1.5) can be represented in the form (1.3), but with ~ re- 
placed by the "mirror" variable ~' = xtan @ + y and simultaneously Vp § --v~: 

i I 

Op = pp~/ [~  + (t - -  ~) q'] ,  up = u o + ( q ~ c o s ~  - -  uo) ~l', 
( I  .6) 

p ! t _ ~ i  

V p = ( q ~ s i n a ) ~  , T p =  T o - ( T  o -  T ~ ) e  , 

where J' = J(n'), while the function ~'(~') satisfies the equation 

I 

~' sin m/sin (a + 0) = S [e + (1 - -  e) s] Ip (s) ds/s ~. ( 1 . 7) 
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All arguments preceding the derivation of the solution of the problem (1.1) and (1.2) 
can be successfully replaced by a group analysis of the corresponding equations (see [10]). 
This remark also concerns the method used to find the solution of the problem (1.1) and (1.5). 
The existence of a discrete symmetry group (mirror symmetry) facilitates finding the solution 
of the last problem, but this property of the solutions (1.6) is destroyed by any perturbation 
of the boundary conditions (1.5). From the physical viewpoint, the conditions u~ = ~lUp, 

! 

v~ = --12Vp, describing the partial loss of momentum in a collision (%1, ~2 are the coeffi- 
clents of restitution of the velocity in the collision), are more acceptable. The appear- 
ance of arbitrary coefficients in the condition (1.5) destroys the symmetry of the problem, 
whose solution in this case cannot be reduced to quadratures. 

It is necessary to establish the form of the trajectories of both the incident and re- 
flected particles. If the coordinates of the trajectory of an incident particle are denoted 
by Xs, Ys, then from (1.4) and the definition of the trajectory we have 

dx~ tg 0 -- dy~ -- [e + (l -- QSllp(S) sin (0 q- ~)ds/s 2 sin a = O, 

.ut, dg ~ - -  v p d ~  = O. 

From here we find an expression for the trajectory in a parametric form: 

3 

x, = x o - -  " J' up (s) I~ (s) cos Ods/(s2q~ sin ~), 
s o 

Y* = Yo - -  j vp (s) lv (s) cos 0 ds/(sZq~ sin a),  
~ 0  

where Up(S) = u0 + (qoocos~ -- u0)s; Vp(S) = --(qoosin~)s. Analogously, for trajectories of 
reflected particles we obtain 

81 

x~ = x I + ~ u~, (s) It, (s) cos Ods/(s"qoo sin e), 
s 

s 1 

y ~ =  ., t~v(s) l p ( s ) c o s O d s / ( s . q ~ s m  cz), (1 . 8 )  
8 

t p 

u~ (s) = ~ (s), vp (s) = - v~ (s). 

Since the motion of the reflected particle depends on its motion before the collision with 
the surface, we require that Xs(Sl) = xl. On the other hand, from the fact that the particle 
passed through the shock in the course of its motion, it follows that Y0 = x0 tan e, so = I. 

Setting in (1.8) xl = 0, sl = I, we find the equation of the limiting trajectory ys(x), 
below which the cloud of reflected particles moves (curve 4 in Fig. 1). The slope of the 
limiting trajectory near the tip of the wedge is given by dys/dx(O) = tan~ (in the case of 
specular reflection the angle of incidence is equal to the angle of reflection). If, there- 
fore, the inclination of the shock wave relative to the surface of the wedge is less than 
the inclination of the limiting trajectory (0 < ~), then some relative fraction of the par- 
ticles is reflected straight into the incident flow. In this case, the solution obtained 
above for the problem of the motion of reflected particles is not valid. We shall ignore 
this possibility below, and we shall set simply @ ~> ~. 

2. Interaction of Acoustic Disturbances with a Cloud of Particles. In order to take 
into account systematically the effect of a large number of particles on the state of the gas 
flow, we shall use the equations of motion of a non-single-phase mixture, written in the form 
of conservation laws: 

xo.(,o  + + + r + + = o, 

o ! t 2  l / r 

a,,,a. (p=-' + p + p , < ,  + p,,~,, ) + a / o r  (p~v  + p ~ = y ~  + p ~ , , v ~ )  = o, 

l p ~ �9 i 2  

a , a .  (pu  + + + o/o , § p + p , A  + ) = o,  
r t i l ,  t t 

,) , 2 

e = ? p / p ( ? - - l ) + ( u  2 + w)/2, %=c~T,, + (u~ + %)/2, 
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�9 ~ t  ~e , 2  

ep = cs p + (up + v 9 ) / 2  (p is the gas pressure). (2. I) 
Evaluating the relative contribution of the terms with the index p to the dynamics of 

the carrying gas, we find that this contribution is proportional to the relative flow rate of 
the particles, i.e., ~0. Therefore, when 60 ~ I, the problem can be viewed as the perturbed 
motion of gas in an acoustic formulation. We linearized the gasdynamic parameters using the 
formulas 

2 ~ 2 
P = Po + poUoSoP, e ---- e o + uo6oe. 

We substitute these expressions into (2.1) and express the terms with the index p in 
accordance with the model adopted for the calculation in the form (1.3) and (].6). Then, 
after some simplifications and dropping terms which are second and higher order infinitesimals 
in 60, we obtain the well-known system of equations of supersonic acoustics [1, 2]: 

O~lO:c + ~ l ~ x  + o7/o~ - o, 

Ou/Ox + 9p/Ox = (tg ~ Oluo) (dv;/d~ + (~dv~)/d~ ), 
t t o~.1o= + o~/ou = - ( t g  o/~o)(d~/d~ + ~d~/d~ ), (2.  ~) 

o~Io= - (~/M~,) ~ l O x  + (.~ - -  ~ i / ' i~ lox  (~ - ~) t~~ (~n' _ ~'~ 

Here M is Mach's number behind the oblique shock; o is the unit step function: 

i,  y < y: (x), 
0,~ y>y~ (x); 

Ys(X) is the limiting trajectory. The system of equations (2.2) must be supplemented by 
boundary conditions on the shock, on the surface of the wedge, and also on the line y = Ys • 
(x), which is a surface of weak discontinuity of the gasdynamic parameters. The conditions 
on the shock are obtained by linearization of the Rankine--Hugoniot conditions [1, 2]: 

where 

~'----" - - [ l  -5 d i e  - -  i ) m ] ~  tg  0 , 0  ----- my, 

[2e -- (t -- e) (y --'i) M s sin20] tg 0 

is the perturbation of the angle of 
tions have the form 

e -~ (M ~ - -  1) tg 2 0 - -  ( l  - -  e) ?M 2 sin20 ' 

n - -  l - ~ [ y n - - y - ~ - t ] M  2s in  eO 

i n =  ( t / s - - l ) [ 2 - k ( y - - l ) M  s ] s i n  e O t g O  ' 

i n c l i n a t i o n  o f  t h e  s h o c k  w a v e .  The two other condi- 

~ = 0  at . g = 0 ,  

(~, yt + o) = ~ (x, y: - o ) ,  ~ (~, y~* § o) = ~ (x, yt - o), 

~(~, F + o) =~(x, F - o ) ,  ~(~, y* + o) =~(x, F - o )  
~t y = y$ (x).. 

The last conditions express the property of continuity of the gasdynamic parameters at the 
surface of the weak discontinuity. The entire region of the flow behind the oblique shock 
is divided naturally into two regions: DI (o = 0), De (o = I). In the region DI the solution 
of Eqs�9 (2.2) for perturbations ~ and D can be represented in the form 

where (0 = ]/~M-~-- I; ~e ~-- z ~__ 0)g; p(~), ~(~) are particular solutions of the problem, which are 
easily found because of the special form of the right sides of Eqs. (2.2). Assuming that all 
functions sought depend only on ~, we find 

u(~) = -- '~($) tg  O, p(~) = ~(~) tg  0 ~- Vp(~) tg  O/uo, 
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(~) = ('? --  1) (ep --  ev0 ) ctg 0 -I- "r vT,, 
[(M sin 0) - 2  - -  ~] U I 

w h e r e  epo  = c s T 0  = u 2 / 2 .  

U s i n g  t h e  c o n d i t i o n s  on  t h e  s h o c k  w a v e ,  we e x p r e s s  ~ a n d  r 

} = r  + x ~ o ( ~ + )  + ~(D + c, 

b-=  ~ ( r  - ~,r + b~) - ~c ,  

w h e r e  >~ = ( m n -  1 ) / ( m n  + 1 ) ;  X2 = (1 - -  c o t a n O ) / ( l  + ~ t a n e ) ;  C = [ n g ( O )  --  1 ~ ( 0 ) ] / ( 1  + ~ n ) .  
In the region D2 the solutions for the perturbations ~ and 9 are represented in the form 

= ~ ( ~ + )  + ~ ( ~ _ )  + ~7(~) + ~(~') ,  

= ~(~+.(~_) _ ~(~+))  + ~c(~) + y(~,), 

where 

in terms of one function: 

(2.3) 

~ 1  A !  V 

p ( ~ ' ) = - - v  t g O - - v p t g O / u o ;  

[(M sin O) -2 -= i] u~ 

F r o m  t h e  c o n d i t i o n  o f  i m p e r m e a b i l i t y  a t  t h e  s u r f a c e  o f  t h e  w e d g e ,  we c a n  e x p r e s s  q~t a n d  (P-z 
in terms of one function: 

= ~(~+) + ~(~_) + ~(~) + ~'(~'), 

~b = ~(~(~_) - ~(~+)) + ~(~) + ~(~'). 

Joining the functions determined in the regions D l and D2 on the line y = Ys(X), we obtain 
the following functional equations: 

Ar 
qo(t) O( t )  - -  [cop'(~+) + v (~+)]/.co, 

r  - -  ~(I)(%2t ) = C + (p'(~_) - -  p ' (~+)) /2  / -  ( ~ ' ( L )  -{- ~'(~+))/2(o, ( 2 . 4 )  

( o ~ • 1 7 7  xi__+(og~ ( x •  

If the particles stick to the surface of the wedge, then the solution (2.3) is valid in the 
entire region of the flow. In this case, the determining functional equation has the usual 
form for perturbation theory [~, 2]: 

�9 o(X) - ~ r  = c - S ( x  tg 0)I~, ( 2 . 5 )  

where the index 0 distinguishes the case of an inelastic collision. 

Thus the solution of the problem of the interaction of acoustic perturbations with a 
cloud of particles in supersonic flow over a wedge reduces to the solution of the functional 
equations (2.4) and (2.5) (this is done by numerical methods). 

3. For some model laws of drag and heat transfer the integrals in expressions (].4) 
and (].7) can be calculated exactly [7]. In the numerical calculations we assumed, following 
[9], that the drag and heat-transfer coefficients are equal to 

c .  ( ~ ,  ~ )  = cS (1 - 0,~5 M + 4.8~ M ~ --  0,v3 M 3 + ~.94 M~)/(I + t.~ McS) '% 

CS = 2 i . l / n e  + 0,3f VK; + 0,25. 

Figure 2 shows the results of calculations illustrating the effect of Re0 on the dynamic 
(curves ]-3) and thermal (curves 4-6) relaxation of the particles behind an oblique shock. 
The function n(~) (curves I-3) and the reduced temperature T = (Tp -- T~)/(T0 -- T~) (curves 
4-6) are plotted along the ordinate axis. The calculations were carried out for Cp/C s = 0.46, 
Pr = 0.65, Moo = 1.7, ~ = 15 ~ The curves I-3 (4-6) correspond to Re0 = 100 , 102 , ]03 . The 

parameter ~p(]) = 4Psdp/3p0CD(Re0, M0). 

To find the function ~(t) [or ~0(x)] the solution of the corresponding equation was 
represented in the form [1] 
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(t) = ~ X~Q (X~t), ( 3 . 1 )  
h = 0  

where Q is the right side of Eq. (2.4) [or (2.5)]. It is well known that the coefficient 
of reflection of the perturbations from the shock %z is small everywhere except at singular 
points, in the vicinity of which M § I. This question is studied in detail in [I]. In order 
to find the solution with the required accuracy when XI ~ I, it is sufficient to retain only 
several terms in the series (3.1) (it is easy to verify that Q is everywhere a bounded func- 
tion). To monitor the accuracy of the calculations we used the asymptotic formulas, valid 
for the case when the particles are reflected in the case that the particles stick: 

lira O = l i ra  O0 = m y  (0), 

lira p (x, 0) = lira P0 (x, 0) = (n - -  tg 0 )v  (0) + s in 0 s i n  a / cos  (0 + ~),  
~ x~ (3.2) 

(0) = [(? - -  t) ( e ~  - -  evo) ctg 0 - -  2uoq~ s in  al / ( (M s in  0) - z  - -  1) u~, 

e p ~ = c ~ T ~  + q ~ / 2 .  

We determined the density of the axial component of the force acting on a symmetrical 
wedge in a supersonic gas-suspension flow using the formula 

(F -- f o ) / 2  = - - p ~  s in ~ + p~ Cos ~, 

where F0 is the density of the force with pp = 0; Pn, PT are the components of the stress 
tensor. According to the law of conservation of momentum of the particles we have: 

a) for elastic reflection 

p .  = - -  (5o9oU~) P - -  2pvv~ ,  P~ = O; 

b) with total absorption of the particle momentum by the surface 

p ~  = - -  (6o9oU~) Po - -  PpV~, P~ = - -  p p u # % .  

F i g u r e  3 s h o w s  t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n  o f  t h e  f o r c e  d e n s i t y  i n  t h e  c a s e  " a "  ( s o l i d  
l i n e s )  a n d  " b "  ( b r o k e n  l i n e s ) .  F o r  c o n v e n i e n c e ,  t h e  d i m e n s i o n l e s s  q u a n t i t y  CF = (F --  F 0 ) /  
( 2 6 0 P 0 U ~ )  i s  p l o t t e d  a l o n g  t h e  o r d i n a t e  a x i s .  

The  c a l c u l a t i o n s  w e r e  c a r r i e d  o u t  w i t h  Re0 = 10 ,  P r  = 0 . 6 5 ,  Cp /C  s = 0 . 4 6 ;  u = 15 ~ , ~ = 
2 . 6  f o r  c u r v e  1; a = 15 ~  >~ = 1 . 7  f o r  c u r v e  2 ;  a n d  a = 30 ~ , Y~ = 2 . 6  f o r  c u r v e  3 .  I t  i s  
evident that as the distance from the front edge increases, the force density decreases down 
to the value determined from (3.2). The magnitude of the force in the case of an inelastic 
collision exceeds the value for an elastic collision, which is a result of the contribution 
of the tangential component of the momentum of the particles. Evidently, the presence of the 
admixture of particles in the supersonic flow can both increase and decrease the effective 
forces, depending on the linear size of the wedge L. Thus when L ~ Ip(1) the drag increases 
with the gas-suspension flow over the wedge, while when L ~ ~p(1) the drag decreases. This 
result is not unexpected, though it contradicts the intuitive idea of the origin of drag in 
the flow of particles. ~en L ~ ~p(1) the two-phase flow is almost at equilibrium, and under 
these conditions the role of the particles reduces to changing the thermophysical parameters 
of the two-phase mixture. For example, ~ = (Cp + ~0Cs)/(c V + ~0Cs) ~ y[1 + ~0(I -- Y)Cs/C~] , 
i.e., the effective adiabatic index decreases in the presence of particles. The interactlon 
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of many particles causes the pressure behind the shock in the dusty gas to drop below that 
in the pure gas for fixed conditions of flow over the wedge (see [3, 4]). 

The average drag in the flow of particles is CF=SCFdx/L. We calculated the dependences 
0 

CF(d p) for different Mach numbers of the incident flow and different wedge angles, and for 
two mechanisms of momentum transfer (elastic and ineleastic impact). Some results of the 
calculations are presented in Fig. 4. Curves I, 4, and 5 (elastic impact) correspond to ~ = 
2.6, ~ = 15~ ~ = 2.6, ~ = 30~ M~o = 1.7, ~ = 15~ curves 2 and 3 (inelastic impact) corre- 
spond to Ygo = 1.7, ~ = 15~ ~o = 2.6, ~ = 30 ~ . It is evident that there exist two sections 
of self-similarity relative to the size of the particles in the dependences CF(dp). Let us 
form the dimensionless parameter (Stokes number) Sk = ~p(1)/L. If Sk ~ I, then we have an 
almost equilibrium flow and the drag decreases because of the pressure drop behind the shock 
[left self-similar section on the curve CF(dp)]. On the other hand, if Sk ~ I, then the drag 
is determined primarily by the momentum flux of the particles on the surface in the flow [the 
right self-similar section on the curve CF(dp)]. An analogous behavior of the drag of a wedge 
in a subsonic gas-suspension flow was observed in the experiments in [11]. 

We studied the effect of reflected particles on the magnitude of the perturbation of the 
angle of inclination of the shock wave. Figure 5 shows the results of the calculations of 
as a function of the distance up to the tip of the wedge. The solid lines correspond to spec- 
ular reflection and the broken lines correspond to sticking of the particles. The calcula- 
tions were carried out for Re0 = 10, Pr = 0.65, Cp/C s = 0.46; for curves I ~ = 15 ~ M~o = 1.7; 
and for curves 2 ~ = 30 ~ , ~ = 2.6. It is evident from Fig. 5 that at the tip of the wedge 
[at x ~ Ip(1)] the departure of the flowfrom equilibrium increases in the presence of re- 
flected particles, but for small wedge angles the effect is insignificant. At a large dis- 
tance from the tip of the wedge both flows being compared arrive at the same state; this fol- 
lows directly from the asymptotic formulas (3.2). 
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HYDRODYNAMIC INSTABILITY OF THE ABLATION FRONT IN THE PRESENCE 

OF ABLATION ACCELERATION OF A LAYER 

N. A. Inogamov UDC 532.5+533.95 

I. A large number of papers on the instability of an ablation front (AF) accompanying 
the acceleration of a layer by the ablation pressure has now been published [I-13]. The 
Cauchy problem, linearized around the stationary flow, which is found by numerical calcula- 
tion, is studied numerically in [4, 5]; the numerical calculation of the Cauchy problem, 
linearized around the stationary flow, is carried out in [6, 7]. The stationary solution 
is found by numerical integration of a system of ordinary differential equations. We must 
make an important remark regarding [6-7]. We shall show that the stationary flow in a gravi- 
tational field has a peculiarity which invalidates the results of [6-7], regarding taking 
into account of the compressibility of the cold material and of the long-wavelength pertur- 
bations. We shall study the stationary solution in the region filled with cold matter. In 
this region, in the vicinity of the AF the flow is subsonic (M ~ I). In the presence of 
gravity, the Mach number M = v/c in the subsonic flow increases monotonically away from the 
AF in the cold matter and at some distance LI from the AF M = I. The point is that in the 
cold matter the electronic thermal conductivity is small and the heat fluxes correspond as 
negligibly small. Therefore the stationary flow of cold matter is isentropic. For subsonic 
flow with M ~ I in the vicinity of the AF, because of the effect of the gravity, the pressure 
in the cold matter decreases away from the AF. The flow is isentropic, so that the density 
and the sound velocity decrease together with the pressure. The flow velocity v in this case 
increases, since the mass flow must be constant and correspondingly M = v/c increases. The 
appearance of an internal supersonic zone in the stationary flow does not correspond to the 
essence of the problem of acceleration of the layer by the ablation pressure. For this rea- 
son the results of [6, 7] are useful only for % ~Ll. When % ~ LI the effect of compress- 
ibility of the cold matter becomes significant, but in the formulation of [6, 7] this effect 
is not taken into account correctly. The question of the compressibility and long-wavelength 
perturbations is analyzed in detail in this paper. 

In addition to the works enumerated above, in which the linear stage is studied, inter- 
esting studies [7-9] on calculations of nonlinear two-dimensional flows have also been pub- 
lished; [I, 2, 10-12] concern analytical estimates. In [10, 11] it is proposed that a sub- 
sonic AF can be replaced by a jump in the deflagration wave. The work in [12] is based on a 
study of an unstable zone in which the vectors Ap and Ap are antiparallel. It is assumed 
that the growing perturbations are spatially localized in this zone. We note that under the 
usual [3, 4] conditions (I ~ 1014 W/cm 2, Nd laser, layer thickness L = I-4 Dm) the thickness 

s of this zone is small (At ~ 0.1Mm). The growing perturbations can have % ~ At. In this 
case, the field of perturbations is spatially localized in a layer of thickness ~% ~ 41 ad- 
jacent to the AF. In this case, the fine structure and the presence of the unstable zone 
are of no significance, since for such waves the fine structure is "hidden" within the thick- 
ness of the line (associated with the thickness of the "slate pencil") marking the perturbed 
boundary. 

2 M~L, where ~ Va/C s v a is the The short-wavelength scale of stabilization %a = va/g ~ = , 
velocity of the AF relative to the cold matter, the index a indicates ablation, c s is the 
sound velocity in the cold matter near AF, and g is the acceleration of the layer, is esti- 
mated in [I]. 

The effect of compressibility is analyzed in [2]. It is shown that for a typical large 
ratio of densities on the AF the dispersion curve in the case of isentropic gas coincides 
with the dispersion curve in the case of an incompressible liquid with an arbitrary ratio of 

2 ' 2 
the parameters v%/c s ~ %/L, where v% = /Igl%. 
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